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Abstract

This paper reports the results of a small study of requirements changes to the
onboard software of seven spacecraft subsequent to launch. Only those requirement
changes that resulted from operational (i.e., post-launch) anomalies were of interest
here, since the goal was to better understand the relationship between critical anomalies
during operations and how safety-critical requirements evolve. The results of the study
were surprising in that anomaly-driven requirements changes during operations were
rarely due to previous requirements having been incorrect. Instead, changes involved
new requirements either (1) for the software to handle rare but high-consequence events
or (2) for the software itself to compensate for hardware failures or limitations. The
prevalence of new requirements as a result of post-launch anomalies suggests a need for
increased requirements-engineering support of maintenance activities in these systems.
The results also con�rm both the di�culty and the bene�ts of pursuing requirements
completeness, especially in terms of fault tolerance, during development of critical
systems.
Keywords: operational anomaly, requirements evolution, software safety, spacecraft,

maintenance

1. Introduction

This paper reports the results of a study of safety-critical requirements changes, in response
to anomalies during ight, to the software onboard seven spacecraft. We distinguish these
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anomaly-driven requirements changes from requirement changes resulting from planned evo-
lution or maintenance in an e�ort to understand and, perhaps, reduce their number and
attendant risks.

In planned evolution or maintenance there are many requirement changes to the onboard
software on a spacecraft after launch. The lifetime of a spacecraft is usually measured in
years, and scheduled updates must maintain the software as the spacecraft proceeds through
the phases of its mission. For example, new software tailored to the next phase will often be
uplinked to a spacecraft's computers prior to each navigational maneuver, orbital insertion
around a planet, sequence of scienti�c data-gathering, etc.

In this study, however, it was not these anticipated requirements changes due to scheduled
maintenance that were of interest. Instead, the goal was to better understand the relation-
ship between anomalies during operations and the evolution of safety-critical requirements.
We thus focus on a very small but essential and high-risk (because urgent and unplanned)
subset of the total set of requirements changes to the spacecraft software. Software require-
ments such as these that are essential to the accomplishment of the spacecraft's mission are
de�ned as safety-critical in this domain. The objects of study were thus the unanticipated
requirements changes prompted by critical, operational anomalies.

The rest of the paper is organized as follows. Section 2 describes the approach. Section
3 presents and discusses the results. Section 4 places these results in the context of related
work in both requirements engineering and maintenance. Section 5 provides a summary and
some concluding remarks.

2. Approach

The data for the analysis of critical, unanticipated requirements changes were drawn from
an institutional database of anomaly reports. Data were analyzed from seven spacecraft:
the Galileo mission to Jupiter, launched October, 1989; Mars Global Surveyor, a mapping
mission launched in November, 1996; Cassini/Huygens, launched in October, 1997, to explore
Saturn and Titan; Deep Space 1, a technology demonstration mission (of ion propulsion and
remote agent technologies, among others) launched in October, 1998; Mars Climate Orbiter,
launched December, 1998, and lost at Mars; Mars Polar Lander, launched January, 1999
to study the Martian surface and dig for water ice, lost during landing; and Stardust, a
spacecraft that will return cometary material to Earth, launched in February, 1999.

The reporting mechanism for the operational anomaly data is an on-line form called an
Incident/Surprise/Anomaly report (ISA). An ISA consists of three parts. The �rst part
is �lled in at the time of the occurrence by the operator. The second part is �lled in by
the analyst assigned to investigate the occurrence. The third part is �lled in later with
a description of the corrective action that was taken to close out the incident. Additional
information regarding criticality, priority, time and date, subsystem, etc., can also be entered
into the available �elds.

It is worth noting that an ISA is not a defect report. An ISA is written whenever the
behavior of the system di�ers from the expected (i.e., required) behavior in the eyes of the

2



operator. Thus, the ISA provides valuable information to the requirements engineer because
it tends to capture gaps between the requirements as speci�ed and implemented and the,
perhaps di�erent, user's expectations.

The ISA also provides a means of documenting near-misses, i.e., failures that almost
occurred but were prevented by some fortuitous circumstance (e.g., fault monitoring, con-
tingency commands, a change of mode, etc.). In some cases the near-miss prompts a change
to the ight software requirements. For example, in this study six ISAs described incidents in
which an in-ight anomaly triggered a contingency (safe) mode or fault-protection response.
In these cases a new software requirement resulted from analysis of the incident in order to
preclude such an anomaly in the future.

3. Results and analysis

The data set analyzed consisted of 189 ISAs in the highest criticality level from the seven
spacecraft listed above. The criticality level had been assigned by each project based on
standard classi�cations (JPL, 1997). Since there were slight di�erences in the processes
of the seven projects regarding which �elds of the anomaly reports were used, we studied
the anomaly reports that met one of the following three criteria in order to assure that we
provided coverage of all critical ISAs: Red ag or Potential red ag = On (indicates high
mission risk if the event were to recur; signi�cant or catastrophic risk; and uncertain �x);
Criticality = 1 (the highest category, indicating an unacceptable risk with no workaround);
or Criticality = 2 and Priority = 1 and Failure E�ect >= 2 (the high priority is assigned
by the correcting agency indicating a \must-�x" situation; the failure e�ect of the anomaly
is signi�cant or catastrophic) Anomalies meeting one or more of these criteria were studied
and are together included under the shorthand term \critical ISAs" in this paper.

The results reported here are part of a larger project to use analyses based on Orthogonal
Defect Classi�cation (ODC) (Chillarege et al., 1992) to characterize post-launch safety-
critical software anomalies. The ODC-based approach has allowed detection of a surprising
number of high-criticality anomalies resolved by changes to ight software requirements (the
\target" in ODC terms) during operations.

Table 1 summarizes the results. 44 of the 189 critical ISAs had ight software as their
target, i.e., the anomaly prompted a change to the ight software. (The other 145 ISAs
produced changes to procedures, ground software, documentation, etc., outside the scope
of this paper.) 15 of the 44 ISAs resulted in updates only to the code but not to design
or requirements (e.g., bias or �lter updates, adjustment of a timeout parameter, erroneous
re-initialization to \on" rather than \o�"). Nine of the remaining anomalies that had ight
software as their target had �xes to design logic as the corrective action, but had no e�ect on
requirements. Of the remaining ISAs, two were maintenance problems (incorrect software
patches); one recorded an occasion on which an existing contingency software command,
previously created just in case an overpressure emergency should ever occur, needed to be
sent to the spacecraft to close a leaking valve; one �x was not implemented due to cost
and schedule tradeo�s; and �ve anomalies were not classi�ed due to currently incomplete
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Change Number

New requirement 11

Design logic �x 9
Code �x 15
Maintenance (previous patch �xed) 2
Contingency command 1
Fix not implemented 1
Unclassi�ed 5
Total: Changes to Flight Software 44

Table 1: Summary of ight software changes due to safety-critical operational anomalies

information.
The discussion that follows focuses on the remaining eleven of the 44 high-criticality,

ight software ISAs, since each of these involved new software requirements for the ight
software.

3.1 New requirements for rare events

Post-launch critical anomalies were resolved by new requirements to handle rare or anoma-
lous events in seven cases. In the �rst of these, an unusual code path (due to an unanticipated
combination of circumstances) caused unexpected behavior. In another, an unforeseen sce-
nario led to the use of obsolete data in a particular case. In another case, an inappropriate
software request for data just as it became unavailable resulted in loss of timing and mode
synchronization among software components. In three other critical anomalies, a rare sce-
nario led to an overow. For example, in one of these cases, a contingency situation (failure
of both redundant units) caused an overow of the message queue and a warm boot.

In another anomaly, safety-critical post-launch requirements changes were initiated due
to a rare environmental event{namely the unexpected outow of some debris that interfered
with the spacecraft's ability to determine its position in space. The new software require-
ments were to make the spacecraft more fault-tolerant to that type of temporary \loss of
vision" in the future. In each of these seven cases, the anomaly was considered to contribute
risk to the mission, and a critical software change was made to add robustness against future
occurrences.

These results con�rm the importance of rare events in critical failures. As Hecht noted
in his 1993 paper, \the inability to handle multiple rare conditions, such as response to
hardware failures or exception conditions caused by the computer state, is a prominent
cause of program failure in well-tested systems" (Hecht, 1993). Hecht further noted, \Rare
events were clearly the leading cause of failures among the most severe failure categories."
The results described here suggest a close, causal relationship betwen critical anomalies post-
launch that are due to rare events and the evolution of the ight-software requirements to
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Figure 1: Software requirements change to compensate for hardware failure

protect the systems against such occurrences in the future.

3.2 New requirements to compensate for hardware

Critical requirements changes were driven by changes to the hardware in four cases. In one
case, for example, a hardware failure prompted on-board fault-protection software to turn
o� the hardware component. Subsequent analysis revealed the \what-if" scenario that the
other two, redundant components might fail in worse condition (unlikely, but credible). In
that case, the on-board software would need to turn on the \least-failed" component that
had been previously turned o�. A new software requirement to facilitate this switching was
established in response to the failure scenario arising from the initial hardware failure.

In another case, a new capability was added to the ight software in response to a dam-
aged solar array panel that could not deploy as planned. In a third case, a new software
requirement resulted from the discovery of unexpected angular rates around an axis when-
ever a thruster was �red. Similarly, when proximity to an antenna caused noise in some
transducers, resulting in inaccurate readings and unnecessary re-setting of components, the
anomaly was resolved by a new ight software requirement to compensate for the noise.

One issue of interest in these cases is that the trigger for software change was hardware
failure. This is contrary to the underlying assumption of some defect models that what
breaks is what gets �xed. It is very typical, however, of complex, heavily embedded software
on the spacecraft, in which, as hardware degrades, the software requirements evolve to close
the gap (Fig. 1).

Perhaps the best-known example of this is the re-programming of one of the Galileo
spacecraft's computers with clever, new compression algorithms to minimize scienti�c data
loss when Galileo's large antenna failed to deploy.

More recently, when the spacecraft Deep Space 1 lost a critical sensor, the software on
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board was changed to compensate for the hardware failure. The failure of the Deep Space
1 star tracker in November, 1999, jeopardized the planned encounter of the spacecraft with
a comet. The star tracker determines the spacecraft's orientation in space and, without
it, the spacecraft is in some sense blind. In order to compensate for the hardware failure,
software was radioed to re-program the on-board camera to serve as a replacement for the star
tracker. The project manager called the updated software \very complex and innovative" and
labeled the change a \rescue"(JPL News Release, 2000). Although none of the requirements
changes in this study approached the scope of the Galileo or Deep Space software changes,
the possibility of having to rebuild remotely a signi�cant amount of the software emphasizes
the need for requirements engineering support during the post-launch maintenance phase.

3.3 Consequences for the requirements process

The pro�le of critical anomalies found during operations on these three spacecraft was com-
pared with earlier work by one of the authors on critical anomalies during integration and

system testing of ight software. The previous work was on two di�erent, but fairly similar
spacecraft (Voyager and Galileo), roughly comparable in function and complexity to the
spacecraft in this study. It was found in the earlier study that, during the testing phase,
most of the critical anomalies involved requirements or interfaces (Lutz, 1993).

The small number of critical requirements-related anomalies found post-launch in the
current study, and the fact that all the requirements-related anomalies yielded new require-
ments (rather than corrected requirements) suggest that the testing process is doing a good
job of removing requirements-related defects. The extensive integration and system testing
of troublesome components may also provide some explanation for a recent �nding by Fen-
ton and Ohlsson of what they call \strong evidence of a counter-intuitive relationship", i.e.,
that modules that are the most fault-prone pre-release are the least fault-prone post-release
(2000). It may be that modules identi�ed as fault-prone during spacecraft system testing{
especially if the fault a�ects requirements{are (appropriately) subjected to more thorough
testing.

An interesting question regarding the 145 critical ISAs that did not produce changes to
ight software is whether a mechanism similar to the use of ight software to compensate
for hardware problems occurs, whereby changes to ground (as opposed to ight) components
are compensating for problems in ight software. That is, how many of the ISAs involved
problems with the ight software that were remedied by changing the more readily modi�ed
components of the system such as ground software or procedures?

Investigation revealed that, in fact, only six of the ISAS met this criteria, and that only
one of the ISAs involved a change to ground software requirements. Of the six ISAs that
involved ight software problems but not ight software �xes, four of the six resulted in
changes to prevent the recurrence of the problem. Of these, one involved modi�cation to the
ground software (to add a pause), one resulted in an update to documentation (regarding
an unanticipated side e�ect of a software command), and two led to changes in operational
procedures (to preclude recurrences of the scenarios).

The other two of the six ISAs described modi�cations to recover from future recurrences

6



of the problem. These included updating the procedure to recover from radiation-induced
bit errors and adding a procedure to automatically recover pending commands lost if the
software crashed.

None of these six ISAs involved ight software requirements, in the sense that none of
these scenarios would, if identi�ed during requirements analysis, have changed the ight
software requirements. Thus, it appears that changes to ground software, procedures, and
documentation are not masking changes to ight software requirements.

As far as the long-term goal of the research in which this study is embedded, i.e., to
further reduce the number of safety-critical anomalies post-launch, the results are somewhat
negative. It is di�cult to see how the requirements engineering process during development
can be readily adjusted so as to preclude the post-launch requirements changes.

To the extent that improvement is possible, these results emphasize the bene�t of thor-
ough hazard analysis and fault-scenario explorations, and of extensive contingency planning
during requirements analysis. Even when a possible requirement has not been implemented,
documented contingency studies can facilitate accurate requirements evolution when it be-
comes necessary during operations. The fact that seven of the eleven critical post-launch
requirements changes were in response to rare events indicates that the cost/bene�t tradeo�
of such hazard analyses makes them practical for such critical systems.

In summary,

� Bad things did happen due to incomplete requirements, i.e., incomplete requirements
were not \good enough" for these critical systems. The bene�t of working toward
complete requirements was clear.

� The missing requirements were \hard", i.e., they involved subtle, rare, or unexpected
circumstances or scenarios. The di�culty and cost of achieving the level of require-
ments understanding needed to forestall such anomalies were high.

� What broke was not always what got �xed, i.e., new software requirements compen-
sated for hardware failures or evolving limitations.

4. Related work

Most work in requirements evolution focuses on the pre-implementation phases of a system.
For example, Anton and Potts describe the use of goals and obstacle analysis to re�ne
evolving requirements (1998). Zowghi, Ghose, and Pappas provide a logical framework
for reasoning about requirements evolution, also within the requirements analysis phase of
development (1997). An open issue worth exploring is to what extent these techniques are
also useful for analyzing the consequences of requirements evolution during operations.

Requirements evolution post-deployment has been studied primarily from the viewpoint
of how it can be managed. DeLemos provides a model of an operational system in which
requirements evolution (in this case, automating the self-destruct feature of a rocket) can
be structured so that the components remain unchanged while their interactions adapt to
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Figure 2: Continuous evolution of requirements vs. discontinuity in methodologies

the changed requirements (2000). In our study, the requirements changes were low-level and
functional rather than architectural, so primarily involved the components themselves.

Lam and Loomes, with experience in product line evolution, discuss management of re-
quirements evolution after installation with particular attention to the impact on stakeholder
viewpoints (1998). The requirements changes that they describe are muchmore open to nego-
tiation than are the safety-critical requirements changes we saw in this study. However, their
emphasis on modeling evolution as a series of distinct changes, and on developing a \richer
notion of traceability" �t well with the analytical process involved in making anomaly-driven
requirements changes on the spacecraft.

Leveson (1995) emphasized the di�culty of producing and maintaining high-reliability
operational software. She noted that even though the Space Shuttle had one of the most
sophisticated software development processes in existence, with extensive resources devoted
to maintenance and veri�cation, software errors at the highest level of severity had been
discovered in its released software.

Fickas and Feather provide a possible direction for actually reducing the unpredictability
of some of the anomaly-induced requirements changes (1995). They describe requirements
monitoring for dynamic environments. It may be necessary in such domains for the system
to evolve, e.g., as assumptions underlying the requirements change. An open question is to
what extent it might be possible, via monitoring, to anticipate some of the rare events or
hardware failures that triggered the critical requirements changes on the spacecraft.

As distinct from requirements-engineering approaches, maintenance methodologies tend
to focus on classifying and managing requirements changes, rather than on analyzing or
anticipating the changes. Figure 2 summarizes the gap that appears to exist between
requirements-engineering-based analysis of requirements evolution and maintenance-based
studies of requirements evolution.

Harker, Eason, and Dobson (1992) classify evolving requirements as Mutable (in response
to the environment), Emergent (in response to a fuller understanding of possible scenarios
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and their consequences), Consequential (post-delivery pressures for enhancements), Adaptive
(allowing local customization), and Migration requirements (supporting gradual movement
to the new system). At least in the spacecraft domain, the categories can sometimes overlap.
Some anomaly-induced requirements changes can accurately be described as both Mutable
(in response to changes in the environment or hardware) and Emergent (in response to a
better understanding of the possible failure scenarios).

Bennett and Rajlich (2000) note in their recent roadmap paper that software evolution
lacks a standard de�nition. They use the term \Maintenance" to refer to general post-
delivery activities, and divide the Maintenance phase into �ve sequential stages: Initial
development, Evolution, Servicing, Phase out, and Close down. The goal of the software
evolution stage is \to adapt the application to the ever-changing user requirement and op-
erating environment. The evolution stage also corrects the faults in the application and
responds to both developer and user learning, where more accurate requirements are based
on the past experience with the application."

The spacecraft post-launch requirement changes also here correspond to several phases.
Clearly, the on-board software �ts the software phase called \Evolution." It also, to some
extent, �ts the subsequent phase of software maturity, called \Servicing." The Servicing
phase is characterized by the danger of loss of key personnel and information (typical of
lengthy spacecraft missions), as well as by a planned commitment (also typical of spacecraft
missions) to keep requirement changes small in scope.

Part of the di�culty in using the maintenance literature to understand the critical space-
craft requirements changes is that the domain of concern in the maintenance literature is
often the business environment (e.g., handling the clamor of competing users) rather than
safety or mission-critical physical environments. One exception is the recent work by Tai
et al. to reduce the risk of maintenance in critical systems and support the evolvability of
spaceborne computing systems post-launch (2000).

5. Conclusion

The results suggest that, for critical systems, e�ort spent on requirements analysis, especially
of failure scenarios, rare events, and contingency planning for how software can compensate
for hardware failures, is merited. Incomplete requirements did, in fact, cause anomalies to
occur. The bad news was that these missing requirements were hard{that is, they involved
subtle, rare, or unexpected circumstances or combinations of events. One of the lessons
learned from the study of requirements changes during operations was that new software
requirements were often needed to make the deployed software more robust against unan-
ticipated scenarios. To a limited extent, requirements evolution in response to these causes
may be able to be anticipated, and we have indicated some promising directions in current
research toward this goal.

Another lesson learned was that requirements evolution post-launch was driven in part
by a dependence on software to compensate for evolving hardware limitations. Contrary
to common defect analysis assumptions, in these cases what broke (the hardware) was not
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what got �xed (the software). This mechanism appears to be more common than expected in
systems where the hardware is di�cult to replace. For example, implantable medical devices
also use safety-critical software evolution to compensate for hardware anomalies. We saw,
as well, that existing maintenance models do not incorporate the requirements-engineering
techniques that might help in analyzing and anticipating possible requirements evolution.
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